
Directed paths in a complex random potential: effects of long-range correlations of the

disorder

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 6517

(http://iopscience.iop.org/0305-4470/25/24/007)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Msth. Gen. U (1992) 65174537. Primed in the UK 

Directed paths in a complex random potential: effects of 
long-range correlations of the disorder 
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AbslrscL We apply lhe replica method supplemenled by a variaiional approach Io 
directed paths which acquire random ampliludes and random phases. This problem 
is peltinen1 to the hopping of eleclmns in disordered materials in Ihe variable-range- 
hopping regime. Here we consider Ihe 'long-range' case in which bolh the amplitude and 
phase mrrelalions of the disorder are long-ranged and a mixed case in which amplitude 
mmelations are long-ranged and phase conelations are &on-ranged. The variational 
"""..".*h C O  -"-"-rl 1,. -"-, i" ,Le li-i. ,.r;"F,..z*~ A;--"";--" ""A i. .*l.lrlr tL_ "ry.Y--.' ." uycc.I ." uoc, ,,. .,,. 1.1.11. "a l l l l l l l l l C  "II..LI.DI"IID, S I , "  I, J1L1"" I..- 

'Flory' uponents for lhe lransverse fluctuations. Slationary Solutions which extremize the 
free energy and are characrerized by non-lrivial patterns of replica-symmetry breaking 
are obtained both analytically and numerically. The mixed ax has a non-trivial phase 
diagram marked by abrupt changes in lhe pattern of replica-symmetry breaking. In lhis 
rase the imaginary pn of the random potential plays an imponant role. 

1. Introduction 

Recently many investigations have probed the importance of interference effects to the 
hopping mechanism of conductivity in disordered insulators and semiconductors [l- 
51. Interference among the mrious Feynman paths associated with the motion of 
electrons through a disordered material can lead to phenomena such as negative 
magnetoresistance [l+ in  the weakly localized regime, interlerence between time- 
reversed paths (backscattering) plays a crucial role [6]. In the strongly localized 
regime, on the other hand, long paths do not make a significant contribution, 
and forwardscattering must be the important interference mechanism. In variable- 
range hopping, an electron 'hops' to a distant impurity site, and the transmission 
amplitude for the hop can be viewed as a superposition of Virtual paths through 
L l l r  "rrrr*G,,,r,g ("l'L1"""1, ""y""Ly allra ,L-J,. ..llbll L L l b  ""p11.y OLllLb., L.lb "L,""~,y 

localized, the dominant contribution to the transmission amplitude comes from the 
shortest paths-those 'directly' connecting the initial and final sites of the hop. 
In this work, we consider some properties of directed paths which acquire both 
random phases and random amplitudes. The properties of such walks have arisen 
in calculations of the localization length [2,3] and the field-dependence of the 
magnetoconductance [2> 3,4bj in disordered insulators. 

Another intriguing aspect of these directed paths in random media concerns 
their relation to spin glasses [7-lo]. For instance, Derrida and Spohn [8] have 
found a mapping between directed walks accumulating random amplitudes (directed 
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polymers) on a Cayley tree and the random energy model, which is in some sense 
‘the simplest spin glass’ [ll]. Mkzard and Parisi 191 have furthered this connection by 
applying the replica method to the general case of random manifolds in disordered 
media. The replica approach facilitates the appropriate averaging over the quenched 
random variables by introducing copies (replicas) of the system [12]. Mkzard and 
Parisi [9] have explicitly demonstrated the Occurrence of replica-symmetry breaking 
(RSB) (a property first found in the mean-field theory of spin glasses [12]) for random 
manifolds when the number of embedding dimensions is large. ’Ikey have attained 
this result by extending a variational approach originally applied by Shakhnovich 
and Gutin [13] to the protein-folding problem. The pattern of RSB and the critical 
exponents obtained in [9] depend on the range of correlation of the disorder. 

In a previous work [lo], we have applied the variational method to the study 
of directed paths incurring both real and imaginary random weights with short- 
range correlations. This extension is important for considering electron hopping in a 
random medium, since the Feynman paths associated with a hop can pick up random 
phases as well as random amplitudes while passing through the intervening impurity 
sites [2]. We have uncovered a rich phase diagram with five phases which differ in 
the amount of interference effects and in the pattern of binding among replicas for 
the ground-state wavefunctions. It is tempting to identify one of the phase transitions 
occurring in that model as the mean-field version of the ‘sign transition’ proposed 
by Nguyen, Spivak and Shkiovsicii p j  to expiain changes in the Rux periodicity (from 
h / e  to h/2e) of the Aharonov-Bohm oscillations as a function of disorder. This 
identification is based on the common lore that the sign transition coincides with the 
‘pairing’ transition which is named for the formation of tightly bound (replica) pairs 
in the replica formulation. (The actual Occurrence of this transition in the physically 
relevant dimension has been questioned [&I.) 

In the present paper, we consider the case of complex weights with ‘long-range’ 
correlations of the disorder as well as a mixed case in which the correlations of the 
random amplitudes are of long range and those of the random phases are of short 
range. The interest in long-range correlation of the disorder has both a theoretical 
and an experimental origin. Theoretically, it has been found for the case of random 
amplitudes (directed polymers) that even in the mean-field approximation (infinitely 
! q e  number of dimen~ions)~ the exponents characterizing the walk are non-classical, 
as opposed to short-range interactions that yield trivial (classical) exponents in this 
limit. Thus, in some sense, the mean-field approximation for long-range correlations 
is more ‘realistic’ since it provides a more faithful picture of what we expect in low 
(physical) dimensions. Experimentally, the hopping distance is always finite, and a 
measure for the range of the correlations of the disorder is given by comparing the 
correlation length of the randomness to a typical hopping distance. Therefore, in 
various samples and realizations of disordered systems, the effective range of the 
correlations may differ. In this context we have to remember that the finiteness of 
the hopping distance in experimental situations will exclude a sharp phase transition 
in the thermodynamic Sense whenever it is supposed to occur. A smoother version 
of the transition might be detected though. Our theoretical results distinguish the 
cases of short- and long-range correlations by the prediction that phase transitions 
are lacking in the latter case. 

When coupled with standard results from path integration, the replica approach 
to ( N  + 1)-dimensional directed paths leads to the study of non-random, N- 
dimensional, many-body Schrodinger-like equations. For the problem with complex 
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weights considered here, the resulting system consists of two sets of n ‘particles’, 
which can be thought of as having different ‘charges’. Averaging Over the real part 
of the weight leads to an attraction between all particles regardless of their charge; 
while averaging over the imaginary part results in repulsion between similarly charged 
particles and attraction between oppositely charged particles. The spatial dependence 
of these interactions corresponds to the correlations among the random variables 
in the original system. The replica approach eventually requires taking the n -+ 0 
limit of some quantity; in the present study, we examine the n -+ 0 limit of the 
ground-state energy of the system. 

One characteristic of directed paths in random media is that the ‘average’ path 
wanders significantly farther along the axes transverse to the directed axis than does 
the non-random version [5,9, 14-18]. The transverse fluctuations in the non-random 
case are diffusive: ( z * ( t ) )  0: t, where 1 measures the distance along the directed axis; 
while in the random case, the transverse fluctuations are superdiffusive and scale as: 
0) a t2“, (for large t) where v f and where fo indicates an averaging 
over realizations of the randomness. There is a proposed scaling relation between 
the exponent U (also denoted by C in some papers) and the ndependence of the 
ground-state energy of the quantum system that emerges from the replica method. If 
the ground-state energy scales with the number of particles as 

Eu(n)  = -EinpO + E2n (1.1) 

where Po is the nonlinear exponent, then Y and 0” are related by [14,15] 

1 + Po 
2PU 

U =  -. 

Kardar [14] has used the (exact) result Po = 3 for a one-dimensional system with 
delta-function attractions [19] and the above scaling relation to infer that v = 3 
for two-dimensional directed walks acquiring random amplitudes with delta-function 
correlations. This claim agrees with numerical simulations [16] and renormalization- 
group calculations [17]. It should be noted that a ‘locality’ constraint required in the 
case of complex weights might spoil this scaling relation, as happens in the model 
with quadratically correlated random phases [18,20]. 

In this work, we apply the replica method to directed paths in a complex 
random potential. Without the luxury of exact results, we consider the properties 
of the ground-state energy variationally-in a fashion which explicitly allows for 
RSB [9,10,13]. The approach yields exact results in the limit of a large embedding 
dimension 191. First we study directed walks accumulating only random amplitudes 
with long-range correlations; we calculate Po within the variational approach and 
verify the consistency of the scaling relation equation (1.2) using the values for v 
previously obtained by Mkzard and Parisi. Next we treat the addition of random 
phases with long-range correlations. We derive the stationary conditions (equations 
resulting from the variation) and show that flu remains unchanged. When one 
considers instead random phases with short-range correlations (the ‘mixed’ case), 
pu again retains its random-amplitude-only value. However, in this case, there arises 
a non-trivial phase diagram, with regions differing in the amount of interference and 
in the pattern of RSB. 

The rest of the paper is organized as follows. In section 2, we describe the model 
and derive the many-body system that stems from the replicating procedure. Section 3 
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introduces the mriational approach to finding the ground-state energy of that system. 
In section 4, we apply the variational method to directed walks acquiring random 
amplitudes with long-range correlations, emphasizing the extraction of the exponent 
Po and testing the scaling relation between it and v. In section 5, we obtain the 
stationary conditions for directed paths in a complex random potential and discuss 
generic features of their solution. Section 6 contains results when both the real and 
imaginary random weights have long-range correlations, while section 7 covers the 
mixed case when the real part has long-range correlations and the imaginary part 
has short-range correlations. Section 8 consists of a review and a discussion. An 
appendix provides expressions for the eigenvalues of hierarchical matrices which we 
use as variational parameters throughout this work. 

2. The replica approach to directed walks 

The superposition of ( N  t 1)dimensional directed paths that begin at (O,O), end a t  
(y, r )  and accumulate random amplitudes and random phases along the way can be 
represented by the following path integral 

where z and y are N-dimensional vectors, O ( z , t )  and V ( z , t )  are random variables, 
and 7 denotes the position along the directed (or 'time-like') axis. The first term in 
the exponential furnishes a line tension associating a weight with the arclength of the 
path, the i r O ( z , t )  term supplies random phases, and p V ( z , t )  provides random 
amplitudes. Let the random variables Q and V have normal distributions with zero 
means and correlations of the form 

(2.2) 

V(s,t)V(z',t') = - 6 ( t -  t ' ) N f ,  

O ( z , t ) O ( z ' , t ' )  = - 6 ( t  - t ' ) N f ,  

Le. short-ranged along the directed axis and of a generic form depending on the 
distance in the perpendicular plane. 

We invoke the replica method to average over the quenched random variables, 
O(z, t )  and V(z, t ) .  Replicating and averaging (Z"(y,  r )Z(y ' ,  r ) )  yields 

where 
+1 i f a = l ,  . . . ,  n 

e ,  = ( -1 if a = 71 f 1,. . . , 2n  
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?he 'partition function' G({ze),r) = (Z*Z)n({z,),r) involves 2n replicas: one 
set of n from the Z's, and the other fiom the 2s .  It is real because we have 
chosen a distribution for O ( z ,  t )  which is symmetric about zero. However, examining 
the hopping probability for a gjven sample requires calculating (Z*(x, r ) Z ( z ,  r ) )  
(the same z in each Z), which is real and positive independent of the distribution. 
Likewise, calculating similar averaged quantities within the replica formalism requires 
that the positions of one set of replicas coincide with those of the other [18]. This 
'locality' constraint can play a very important role especially in the case involving only 
random phases with long-range correlations. 

The partition function G( {za), r )  satisfies the Schriidinger-like equation 

where 

(2.4) 

where the za have been rescaled by The interactions among the replicas 
('particles') originate in the averaging: the random-amplitude averaging produces 
purely attractive interactions; while the random-phase averaging furnishes 'charge- 
dependent' interactions. One can expand the  partition function C as 

where @ i  are the eigenstates of H and Ei are the corresponding eigenvalues. 'The 
'free-energy' density of the walk, f ,  is given by I) = lim E 

d z l  . . .dz ,G(z , ,  . . . ,zn; q,. . . ,zn : r )  
n-U n 

(2.7) 
when flu > 1 (recall flu is the nonlinear exponent in equation (1.1)). When Po < 1 
the above expression diverges. One might consider extending this definition to cases 
with flu < 1 by using for f the coefficient of the linear term in equation (1.1). 

3. The variational approach 

We can extract information on the directed walks such as the scaling of the transverse 
fluctuations from the ground-state energy of H (equation (2.5))-in particular, from 
its scaling with n, the number of particles. Since the exact ground-state energy for 
a generic n-body Hamiltonian is not known, we adopt a variational approach. We 
choose the following variational wavefunction 
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where A is a 2 n  x 2 n  matrix containing variational parameters. A Gaussian 
wavefunction is selected primarily for calculational facilitation. Because of the 
eventual continuation to n -+ 0, one should not only be able to compute the 
expectation energy for general n but also allow for the possibility of replica-symmetry 
breaking that might arise in the n - 0 limit. This Gaussian-variational approach 
produces the exact ground-state energy in the limit of large embedding dimension 
(large N )  [9]. Note that rY. is the exact ground state of the following Hamiltonian 

T Blum and Y Y Goldschmidt 

where A and & are related by 

A = (&)i/2, (3.3) 

Some physical intuition may be obtained by considering h as a variational 
approximation to H with variational parameters representing effective 'interactions' 
among replicas. One should note, however, that not all properties of H are necessarily 
reproduced in h. Fa instance, the ground-state energies of H and h do not coincide, 
even when Q yields the exact ground-state energy of H as is the case for N -+ m. 
See equations (3.5) and (3.6) below. 

With the Gaussian wavefunction, calculating (H), requires computing Tr(rk) and 
(mi, :  + m;: - 2m,,b).  The trace arises from the expectation of the kinetic-energy 
portion of H'; the other quantity emerges from the interaction terms. In particular, a 
"dylor expansion and Wick's theorem applied to an interaction term yield 

where 

(3.44 

(3.46) 

If the correlations have long-range behaviour, i.e. f(z) a ~ ' - 7 0 ,  then f scales in the 
same way as f, i.e. f (z)  o( zl-70, provided yu < $ + 1 [9]. 

The expectation of the Hamiltonian (2.5) with the wavefunction (3.1) becomes 

-1 + - 2 m i b  
+ $ 0 . b  i" [ 2nu 
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Note for comparison that the ground-state energy of h (equation (3.2)) is given by 

(3.6) 

The energy in (3.6) differs from (3.5) even for the 'best' variational matrix mab. This 
difference is a well-known feature of mean-field theory. Fbr a similar phenomenon 
in the Lagrangian formalism, see [9, equation (IIIS)]. 

Just as the Gaussian form of the wavefunction is selected mainly for computational 
reasons, so too is the form of the matrix A? chosen with the eventual n + 0 
continuation in mind. Our parametrization scheme first breaks the 2n x 2n matrix 
A? into two n x n matrices as foiiows 

(3.7) 

with el denoting interactions among equally charged particles and ez interactions 
among oppositely charged particles. We have chosen both C s  to be hierarchical 
matrices as introduced by Parisi [12]. Each hierarchical matrix 2 consists of a 
set of variational parameters ( 6 ;  go; gi I ~ and k designed so that quantities 
calculated from it have a well-defined n - 0 limit. After the limit, such quantities 
involve 6 and a function a(.) on the interval [0,1]. Hierarchical matrices are 
readily diagonalized and have an equal number of variational parameters and distinct 
eigenvalues. We find it convenient to vaw the matrix elements of the 9s with respect 
to the eigenvalues of liE instead of the original interaction parameters. See the 
appendix for relationships between the matrix elements and the eigenvalues. 

4. Random amplitudes 

In this section we briefly consider directed walks which acquire just random 
amplitudes. The reason for doing so is twofold: (1) to provide a synopsis of Mizard 
and Parisi's contribution and (2) to derive an expression for the ndependent ground- 
state energy which is not found in that work. The latter enables us to obtain the 
exponent Po directly and then to verify the scaling relation (equation (1.2)). Averaging 
solely over real weights requires only one set of n replicas and leads to the following 
Hamiltonian 

with all interactions attractive. We calculate the expectation of this Hamiltonian with 
respect to Q (equation (3.1)) in which is a single n x n hierarchical matrix with 
IC-step breaking in the limits IC + 00 and n - 0. We use the eigenvalues of as 
the variational parameters; after the limits are taken, the eigenvalues take the form 
of ( i , A ( u ) ) ,  where A(%)  is a function on the interval [n,l] .  (See the appendix.) 
We choose to retain n instead of replacing it by zero (as is more customary), since 
we intend to find the ndependence of the ground-state energy. 
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Calculating (H), leads to the following expression 

where 

?he first two terms in ( H ) , / N n  constitute the kinetic-energy portion, which is 
simply the trace of f i .  The third term arises from the interactions, where Q(  U )  

represents [m,;h + m,:  - 2 m , b ]  /2nW (see equation (U).) The eigenvalue i is 
associated with the centre-of-mass mode and has a multiplicity of one. Note that 
the other eigenvalues X(u) have multiplicities ndu /uz  in the continuum limit (see 
equation ( k 4 )  in the appendix) which occurs in the expression above wherever A(u)  
does, i.e. in the kinetic-energy term and within Q(u)-the argument of ]-but not 
in the integration Over f. 

leads to = 0, which is simply the usual 
result of translational invariance. Tiking a functional derivative of equation (4.2) with 
respect to A(%) and setting it equal to zero yields 

Varying ( H ) , / N n  with respect to 

n d Z ( u )  =2P2([duf'[Q(v)] +uf ' [Q(u)]}.  (4.3) 

(Note that Az(u)  corresponds to [U](.) in the notation of Mkzard and Parisi.) We 
assume the following form for the 'long-range' correlations 

(4.4) 

If yo < 2 the large-z behaviour dominates and no regularization is necessary for 
small r; consequently, the above expression can and will be used for all z. The 
coefficient (1/1 - yo) is chosen such that the interactions remain attractive. A few 
derivatives with respect to u and some algebra can eliminate the integrals from the 
stationary equation (equation (4.3)) and produce the following local expression 

Note that this equation has two solutions, one of which is A'( U )  = 0 (i.e. A(  U )  = 
constant) and the second is a simple power of U: A(u)  = A T P .  Returning to the 
integral form to connect these two solutions, one determines 

where A, = [n~-'pzyo]'/*-70. The two solutions meet at U ,  = ( 1  + yu)/3, 
independent of p, the 'strength' of of the random amplitudes. As a result, the 
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pattern of RSB does not change with p and no phase transition occurs in this model. 
There also exist finite-step breaking solutions to the stationary equation in which 
A(  U) is piecewise constant on intervals; however, such solutions do not represent the 
‘best’ variational solution. 

Substituting the solution (equation (4.6)) into (H), (equation (4.2)) gives rise to 

from which one can deduce 

1 + Y,, Pu= 2-y,. (4.8) 

Using this expression and the scaling relation (equation (1.2)). one finds for U, the 
exponent associated with the transvene fluctuations 

(4.9) 

which agrees with the ‘Flory’ exponents (9,221. Note, however, that equations (4.2) 
and (4.7) for the ground-state energy differ from the free-energy density provided in 
equation (5.5) of [9]. Their free-energy density corresponds to the n - 0 limit of 
( H ) , / n  which can be taken only for p,, > 1 (y,, > 4) and is given by the coefficient 
of the linear term in n in equation (4.7). 

The expression for (H),(n,7, , )  diverges at y,, = 0, f ,  and 1; while that for p,, 
diverges at yu = 2. The RSB solution (equation (4.6)) is trivial when yU = 0 since 
A,, = 0. The right solution is the replica symmetric one [21], but pu and U are still 
given correctly by equations (4.8) and (4.9). The divergence at yo = f marks the point 
at which the nonlinear exponent p,, becomes linear and where U = 1, indicating that 
the transverse fluctuations are ballistic. The divergence at y,, = 1 is attributable to 
the choice of (1/1 - r,,) as the coefficient of the correlations and can be eliminated 
by using instead sign(1 - yo) (with sign(0) = -1). In this case, the interactions 
have no spatial dependence and (H) is proportional to in ( .  - I), the number of 
interactions [15]. Note that both the yu = 0 and y,, = 1 solutions are dimension- 
independent, implying that the Flory exponents (found in infinite dimensions) apply 
in all dimensions. There are some speculations [22,23] that there is a range of y,, 
values for which the exponents are dimension-independent, but it is certainly not the 
case for all values of 7”. Consider, for example, the case of y,, = $, corresponding to 
an f (z )  which scales in the same fashion as a one-dimensional delta function. The 
Flory exponents in this case are pu = 5 and U = 2; whereas the exact exponents 
for two-dimensional directed polymers with delta-[unction correlations are p,, = 3 
and U = f [14,16,17]. Finally, the divergence of at y,, = 2 marks the onset of 
short-range behaviour and a return to diffusive transverse fluctuations. 

5. Random amplitudes and random phases 

Next we address walks in a complex random potential. Recall that in this case we 
have chosen as the variational matrix a 2 x 2 matrix of n x n hierarchical matrices. 
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Provided the two n x n matrices commute (which is the case for matrices with the 
Same pattern of breaking and is certainly the rase in the limit of full breaking), the 
eigenvalues of the 2 n  x 2n  are the sum and the difference of eigenvalues of the n x n 
matrices; hence, we call them (A+, X+(u)) and (i-, X-(u)). 

'T Blum and Y Y Goldschmidr 

The expectation of H (equation (2.5)) with respect to Q (equation (3.1)) yields 

where 

and 

(5.lb) 

(5.1~) 

(5 . ld )  

The first line in equation (5.la) arises from the kinetic energy (and is just the trace 
of A); the second and third lines come from the interaction terms, with the R 
terms corresponding to interactions among similarly charged particles and the T and 
/TI c\ +Pl.,.C mnm.nnt:nn th,."., n,..,."" """m.:ml.. ^l."mnrl ..".*:̂ In" 
{ X  T U, LI.LLI.7 .'),'L'*'"L...6 "."-I LL"1""&j "pp""1LL4J " l , l , ~ C "  p"'L1C,*". 

Functional derivatives of ( H ) , / N n  lead to the following (coupled) stationary 
equations 
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and 

Variation with respect to i+ yields i+ = 0 (which is simply a consequence of 
translational invariance). Variation with respect to 1- produces a third stationary 
equation; however, except in the case of yo = 0 (quadratically correlated disorder), 
i- ends up equaling lim,,uX-(n). 

In a previous work [lo], we have considered a model with short-range correlations 
of the form 

(5.3) 

where fu is negative. For p > fi and y < fi (which lies within what is called 
phase I1 in [lo]), we have found a solution with one-step breaking of the following 
form 

where 

In the short-range version, the pattern of RSB (e.g. the value of k) depends on the 
parameters p and y, and five phases have been found. 

Certain features seen in the short-range solutions carry over to the ‘long-range’ 
solutions. In fact, to some extent, the latter represents a ‘smoothing out’ of the former. 
For example, the long-range X+(U) does not equal zero but rather approaches it as 
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U -+ 0. One can understand this feature by first noting that [A+(n) - i+] a n (as 
can be shown from equation (AS) in the appendix) and then recalling that i+ = 0; 
combining these results implies X+(n) - 0 in the n -+ 0 limit. At the other 
endpoint (U = I), the long-range X+(u)  approaches a constant, as does X- (u )  at 
both endpoints. Moreover, in both the short- and long-range versions, these constants 
are observed to obey the following inequality 

T Blum and Y Y Goldschmidr 

(5.5) \ /I\ N \ I ? \ ,  \ In\ "+\'I "-\l) "-IuI .  

We have noted in the short-range model that the above relation is a consequence 
of a stronger attraction between oppositely charged particles than between similarly 
charged particles [lo]. 

6. The long-range case 

In this section, we consider walks in which the real and imaginaly random potentials 
have long-range correlations of the form 

We could not find a complete analytic solution to the stationary equations for general 
p, y and yu; however, we could solve them in a few special instances. The case of 
quadratically correlated disorder (yo = 0) was first solved for a real potential [21] 
and then for a purely imaginary potential [!8; 20; 241. We have found that even for 
the general complex potential case given by (6.1) the Hamiltonian is diagonalizable 
and the eigenvalues of 6, the matrix associated with Q (equation (3.1)), are 

In this case, one has available exact expressions for the ground-state energy and the 
partition function C( T )  and can calculate pu and v independently. For 4 = 0 
(random phases only), one finds pu = 4 and v = $, demonstrating that the scaling 
relation (eq41.2)) does not hold in this instance [18,24l]. 

random phases y is set to  zero, Le. return to the random-amplitude model solved 
earlier. The solution changes slightly since the variation now involves two sets of n 
replicas; it becomes 

pnc .!se %!-;e the Statiocpr;. ec;.;aciecs ~c&t;~~I lu  ;f the 'rtrpcnth' of the JL'-*''J e-.. 
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Note that in this expression uc takes half the value it does in the previous SOlUtiOn 
(equation (4.6)). Another solvable case arises when the strength of the real potential 
P is set to zero, for which we have found the following replica-symmetric solution 

These last two solutions (equations (6.3) and (6.4)) are only valid for yo # 0, and 
one does not recover the yo = 0 solution (equation (6.2)) by setting yo to zero. 

In addition to solving this select set of examples, one can demonstrate certain 
analytic properties of the solutions to the stationary equations for general P, Y and 
yo as well as solve them numerically. A few derivatives with respect to U and a bit 
of algebra lead to the following local stationary conditions 

[3A+AyA; )3  *2AQ(A;)2AI * A+A!A;(xL)2 

where the udependence of the As has been suppressed and has been set to one. 
This expression represents WO coupled equations-the first supplied by the upper 
signs, the second by the lower signs. 

Consider an expansion of the As for small U. Recall that limud0 A+( U )  = 0 and 
limn+" A-(u) = constant and add to each the first correction-some power of U 

A+(u) = AIL" + O(u3") 

A - ( u ) =  B -  C U X + O ( U ~ X )  

and substitute these expressions into equation (6.5). A power-counting argument 
reveals that 

After extracting the leading power in U and simplifying the expressions, one finds 

and 
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4.a . 

3.5 . 
s m 
m > c 
0) 2.5 . cn 

- = 3.0 . 

\ L 

'The various derivatives involved in obtaining the local expression of the stationary 
equations prevent one from determining the coefficients B and C individually. Note 
that the small-u behaviour of A+(u) maintains its y = 0 form so long as p + 0. 
Since the nonlinear exponent pu is determined solely by X,(u)  at small U, one can 
conclude that Pu = (1 + yu)/(2 - yo) and U = 3/2(1 + yu) in the long-range case 

in fact, one can construct a reasonabie approximate soiution by assuming that 
A+(u) presewes its y = 0 form but that uc acquires some ydependence and that 
A-(u) develops a break at uC, equaling one constant below uc and another constant 
above uc (with the difference being some function of y). The actual shape is smoother 
but functionally more complicated. A more complete characterization of A+(  U) and 
A-(u)  is readily gained through a numerical solution to the integral version of the 
stationary equations. TI this end, we have simply iterated equations (5.2), using as a 
starting point functions which roughly approximate A,(u) and X - ( u )  in the y = 0 
solution (equation (6.3)). Figure 1 shows one such solution. The relations found 
above mncerning the small U behaviour have been confirmed numerically. For this 
long-range model, we have discerned no numerical evidence for abrupt changes in the 
pattern of RSB of the sort that occurred in the short-range version, that is, we have 
seen no manifestation of a phase transition (except at ,B = 0 where the RS solution 
is recovered). 

Unlike what happens in the short-range model, the solutions in the long-range 
case exhibit signs of interference effects for even the smallest 7. One of the order 
parameters useful in characterizing the phases uncovered in the short-range model is 
ud which is the 'additional' variable along the diagonal of e2, the matrix parametrizing 
the interactions among oppositely charged particles [lo]. It measures the tendency 
for pairing of replicas, In terms of the eigenvalues, it is expressed as 

(for P # 0). 

u d =  $(l)-A;(l)). 1 (6.10) 
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In the short-range model, od = 0 in three of the five phases; whereas, every solution 
found in the long-range model (with the exception of those for y = 0 and yu = 0) 
has non-zero ad. 

7. Mixed case 

Now let us discuss the case in which the phase correlations are short-ranged while 
the amplitude correlations are long-ranged 

Such a model will have non-trivial exponents flu and U (as does the long-range 
version) and a non-trivial phase diagram (as does the short-range version). One can 
envisage a real system for which amplitude correlations among random scatterers are 
long-ranged, while phase coherence is short-ranged. 

For y = 0, one recovers the solution provided in equation (6.3). Since fe(z) is 
non-zero only for a finite range of arguments, the y = 0 solution remains valid for 
non-zero y provided all of the arguments of fe lie outside this range. This condition 
is met when 

(7.2) min[R(u)] = min[T+ S ( u ) ]  = T 2 - lfeul 
Sei 

which in turn implies 

(7.3) 

This condition indicates when equation (6.3) satisfies the stationary equations in 
the mixed case and not when it represents the 'best' solution. The addition of 
random phases is irrelevant to this particular solution; consequently, it has no features 
attributable to interference such as pairing of replicas (U,, = 0). 

We have been able to find a second analytic solution to the stationary equations 
in the mixed case 
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In this solution, A+(.) maintains its y = 0 form, but uc becomes ydependent. The 
break p i n t  uc is determined by the following equation 

T Blum and Y Y Goldschniidi 

It t u m  out that uc lies between (1 + yu)/6 and ( 1  + yu)/3 and approaches the 
latter for large y. Note that L ( 1 )  # A + ( l )  (ud > 0), indicating that pairing takes 
place. 

Instead of having no contribution from the fes as in the previous (y = 0) 
solution, the second solution (equation (7.4)) has one contribution from them. The 
non-zero term is f e ( T ) ,  which arises from 'pairing' interactions, i.e. terms such as: 
fo[(m;t + m;ii,n+i - 2mL!,+i)/2nu]. Hence, this solution requires that 

(7 .W 
min[R(u)] = m i n [ T +  S ( u ) ]  2 - lfeul 

fe i  

while 

T<-. lfeul 
fet 

Substituting the solution (equation (7.4)) into these conditions yields 

(7.7a) 

and 

-2+70 @f &)ItT0 (1 + yu 3% - 3% )> Y r ' K ; '  [?] (7.76) 

respectively. 
A comparison of ground-state energies (which correspond to 'free energies' of the 

walks) furnishes the solid phase boundary shown in figure 2. The solution given by 
equation (6.3) is the better solution in region I of the figure when compared to the 
solution (7.4) (it has a lower free energy), and the opposite is true in region 111 of 

location is given by the solid boundary in figure 2. Although this phase boundary 
approaches the y = 0 axis, there is no phase transition along this axis. 

We have found numerically that there exist solutions which extremize the free 
energy in addition to those given explicitly above. The presence of these other 
solutions supports the existence of the solid boundaly in the figure, but since we are 
uncertain as to which is really the correct solution we have referred to the phase 
boundary above as 'approximate'. The numerical solutions also suggest that .there 
might be another phase boundary which separates the low and high @-regions for 
large 7, as indicated by the dashed line in figure 2 Conditions (7.7a) and (7.7b) 

the fignre. pre$.Ces strosg eyidefice fer 2 phrse trrnsitiefi, ~ h g s p  ~ n n m r i m i t e  "yr 



Directed paths in a complex random porential 6533 

1.2 4 
0 0.2 0.4 0.6 0.6 1 .o 1.2 

Y 
F i y m  2 Proposed phase diagram for Ihe mixed case. The solid mme is obtained bj 
equaling the free energies for solutions (6.3) and (7.4) far 7 0  = 0.99, fso = -1.0, 
fe l  = 1.0, and K O  = 1.0. The broken line is another likely phase bundaly. 

restrict the possible domain of validity of solution (7.4). The borderline determined 
by the first condition lies near the solid line in figure 2 for small y and approaches 
the dashed line from below for large y. The second edge lies entirely within region 
I. These observations further support the phase structure displayed in figure 2. This 
transition remains to be established more firmly in a future investigation, as well as the 
exact phase structure of the modei. Furthermore, the eiFecrs of possibie constraints 
on the mrrect solutions [lo] should to be taken into account. 

Again as in the long-range case, the small U behaviour of X+(u) in all of the 
solutions with p # 0 implies that in all phases the values of flu and v equal their 
y = 0 values (equations (4.8) and (4.9)). 

S. Discussion 

In this work we have focused on directed paths in a complex random potential, 
which are pertinent to the study of interference effects in electron hopping through 
disordered materials. Application of the replica method leads to a many-body 
q~~lantnm system ccmnric*d r.--- of trvn sets af 'charged' plartic!es, which uye treat 
variationally. A proposed scaling relation (equation (1.2)) connects the ground-state 
properties of the many-body system to the wandering exponent (U) of the directed 
walk 

One outcome of this investigation is that the range of correlations of the disorder 
has a major effect on the phase diagram of this problem. When both the real and 
imaginaly parts have long-range correlations, we have found evidence for a transition 
only a t  f l  = 0 (i.e. in the absence of random amplitudes). This transition is marked 
not only by a modification in the pattern of replica-symmetry breaking but also by 
a change in exponents-the exponent U shifts from the value of 3/2( 1 t 7") when 
p # 0 to the value of 5 for p = 0 and similarly for other exponents. The addition of 
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random phases to the problem of directed walks already incurring random amplitudes 
results in 'pairing' of oppositely charged replicas. This change occurs quite smoothly in 
the case with long-range correlations (0 < yo < 2). On the other hand, in the 'mixed' 
case with long-range amplitude correlations and short-range phase correlations, the 
binding among replicas shifts abruptly, and a non-trivial phase diagram consisting of 
at least two and very likely three or more phases emerges. In the weak-coupling 
phase (small P and small y) the imaginaly part of the random potential does not 
play a significant role, but in the other phase@), in particular for large y and small 
p', it modifies the properties of the system. This behaviour is reminiscent of the 
phase transition obtained in the case of short-ranged correlations for both the real 
and imaginary parts of the disorder [lo]. More research is necessary to obtain 
the exact form of the phase diagram in the mixed case. In addition, the case of 
random amplitudes with short-range correlations and random phases with long-range 
correlations remains an as yet unexplored territory. 

These variational results become exact for high spatial dimensions. There remains 
some uncertainty concerning how they would be modified for the cases of N = 1 and 
N = 2, which correspond to the real systems. Solutions on the Cayley tree should 
in principle correspond to N = m and complement the variational replica approach 
used here. Such results are available only in the short-range case [SI; extension of 
these solutions to the long-range and mixed cases would be helpful. 

T Blum and Y Y Goldschmidl 

Acknowledgment 

We gratefully acknowledge financial support under NSF grant DMR-9016907. 

Appendix 

In this appendix, we consider the n - 0 limit of the hierarchical matrices introduced 
by F'arisi [12] in the natural language of their eigenvalues. This reformulation 
simplifies extending the variational calculations to those involving two sets of n 
'particles' as required in the study of directed walks acquiring both random amplitudes 
and random phases. Let A be an n x n hierarchical matrix with li-step breaking; its 
matrix elements are given by 

A,, = i 

A,, = ai 
(-4.1) 

if I ( a / m i )  # I ( b / m i )  and I ( a / m ; + , )  = 1(b/mi+, )  
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where fj is the j x j identity matrix, sj is the j x j matrix with all matrix elemenrs 
equaling one, and fj @ .fk denotes the matrix direct product of fj and j k .  As a step 
toward the eventual n - 0 limit, define a piecewise mntinuous function a( U) on the 
interval 11, n] 

a(.) = ai if mi < U mi+l ('4.3) 

so that a ( m i + l )  = a;. 
ine  eigenvectors oi .d are the direct products of the eigenvectors oi tihe 

.f matrices. The eigenvectors are independent of the parameters (&,a(u) ) ;  
consequently, two hierarchical matrices with the same pattern of breaking (i.e. the 
Same mis) commute. The eigenvalues of a and their corresponding multiplicities are 

A.(ml) = .i - a0 

X . ( m z ) = 6 + ( m l - l ) a o - m l o l  n ( m r  m l l / m t m ~  

- 

Eigenvalue Mulliplicily 

4 m l -  I ) / ~ I  

(A41 
X . ( n ) = 6 + ( m l - l ) a g + . .  . + ( m r ; - m r i - l ) o r ~ ~ - l - m r i o , i  n ( n -  m k ) / n m r i  

L= i + ( m l -  I ) a o + . .  . + ( m K -  m~;-1)a,(--l+(n-ml;lnl; 

The eigenvalues (with the exception of i) are defined as the steps of a piecewise 

as; hence, the parameters ( & , a ( u ) )  can be expressed in terms of the eigenvalues as 
follows 

1. 

mntinl" functinn just 2s k.!h the as. "e that !?.ere 2?P eqL!a! ncmbers af As an?. 

1 -  1 
n n 

a ( n )  = -A,  - -A,(n) 

1 -  1 1  
n ml m2 

In the continuous notation, the previous relations are re-expressed as 

X, (u )= i i+  d u a ( u ) - u e ( u )  

i,=i+i d v a ( u )  
( A 4  

l" 
n 

and 

('4.7) 
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The continuous notation provides the natural setting for taking the n - 0 
limit. (As n approaches zero, the inequality 1 < nil < ... < nix < n becomes 
n 4 mK < . . . < m, 4 1, 'and of course, the mi need no longer be integers.) In this 
limit, Mezard and Parisi (91 introduce the notation 

in terms of which, the eigenvalues are expressed as 

That this quantity is an eigenvalue of the hierarchical matrix explains its prevalence 
in their calculations (91. Note that we will refrain from replacing n with zero, since 
we calculate the ndependence of the ground-state energy in order to extract the 
exponent 0". 

Any quantity that can he calculated from a has a natural expression in terms of 
its ei envalues. For example, if B (parametrized by ( 6 , 6 ( u ) )  is the inverse of a, 
i.e. B= a-', then the bs are given by 

Aa(u) = ?i - ( a )  - [ a ] ( . ) .  (-4.9) 

where A;'(u) = l /Aa(u).  These equations are like those for ( i r , a ( u ) )  only with 
(xa,Aa(u))  replaced by (x ; ' ,X ; ' (u ) ) :  

Consider now tne 2n x in matrix M 
A ? = (  C B  ) 

B C  (-4.11) 

where and 0 are hierarchical matrices. If and 0 have the same mi, they 
commute. Then the eigenvectors of A? are simply (i) @ V  and (2') 8 V ,  where v are 
the shared eigenvectors of and 0. The corresponding eigenvalues are 

A+(u)  = A,(u) + A,(u) A-(u) = A,(u) - Ad(u) 
- -  (-4.12) x+ = xc + x, x- = A, - Ad 

in terms of the eigenvalues of the individual n x n hierarchical matrices. And in 
terms Of these eigenvalues, cs and ds are 

fA.13) 
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and the parameters defining A$-' are obtained by replacing As with A-%. 
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